

MULTI-CROP LAND SUITABILITY ASSESSMENT USING GIS-AHP IN OSUN STATE, NIGERIA

Caleb Olutayo OLUWADARE¹, John Adeyemi EYINADE^{1*},
Ayodeji Iyanu ABIDOYE¹, Bolaji Samuel OGUNLANA¹,
Joshua Ayodeji OLUWADARE¹

ABSTRACT. – **Multi-Crop Land Suitability Assessment Using GIS-AHP in Osun State, Nigeria.** The sustainable cultivation of arable crops in Nigeria is increasingly challenged by climate variability, land degradation, and inefficient land use practices. This study evaluates the land suitability of Osun State for multiple crops—cassava, maize, yam, rice, cocoa, plantains, and vegetables—using a GIS-based Analytical Hierarchy Process (AHP) approach. The research has been conducted to produce spatially explicit suitability maps to support climate-resilient agricultural planning and optimization of crop selection in the region. Seventeen environmental, climatic, and edaphic criteria—slope, elevation, rainfall, temperature, soil pH, organic carbon, macro-nutrients, proximity to roads, and rivers—were integrated using AHP, which derives weights from expert judgment. The weights were then used in a weighted overlay analysis to map the area according to the suitability classes: highly suitable, suitable, moderately suitable, marginally suitable, and unsuitable. The results revealed that cassava and maize have the highest proportions of highly suitable land in the state, with yam coming next. Spatial analysis sets out the top Local Government Areas such as Aiyedaade, Ife South, Ife North, Atakumosa West, and Obokun as highly preferable zones for multi-crop cultivation. This study draws attention to the usefulness of the GIS-AHP method for land evaluation at the regional scale and provides critical insight into data-driven agricultural policy, sustainable land use, and food security in sub-Saharan Africa.

Keywords: *land suitability; GIS-AHP; multi-crop assessment; agricultural zoning; sustainable agriculture*

¹ Department of Surveying and Geoinformatics, Obafemi Awolowo University, Ile-Ife, Nigeria.

E-mails: coluwadare@oauife.edu.ng, ayodejibidoye@oauife.edu.ng

* Corresponding author: jaeyinade@student.oauife.edu.ng

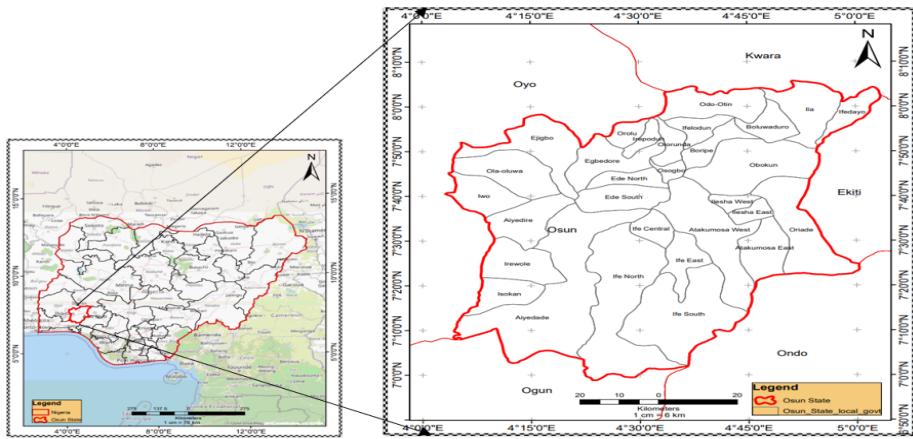
1. INTRODUCTION

Agriculture acts in Sub-Saharan Africa as the backbone of some socio-economic development, along with food security and livelihood sustainability; it accounts for over 60 percent of the workforce while at the same time contributing to a very significant percentage of the national gross domestic product (Haggblade, 2013; Kray et al., 2018; Searchinger et al., 2023). In Nigeria, crops such as yam, maize, cassava, rice, plantain, cocoa, and vegetables keep the small-scale agriculture going and support household food systems and local markets (Olugbire et al., 2021; Chiaka et al., 2022). While the ecological and economic importance of these crops is well documented, their productivity differs depending on the region because there is a mismatch between their ecological requirements and the predominant land use patterns (Siptits & Evdokimova, 2020; Qiu et al., 2021).

That is a complication that is quite keenly felt in southwestern Nigeria, particularly in Osun State, where land use decisions are, until today, still regularly taken on informal or tradition-based grounds. Consequently, poor site selections become a hindrance to farm productivity as do resource misallocations and environmental degradation on a long-term basis (Oyekale, 2012a; Oyekale, 2012b; Alabi et al., 2024). Population pressure, climate variability, and the depletion of soil nutrients have added another layer of adversity to the problems of agricultural land management and planning, thus invoking the urgent need for data-based tools (Ezekiel et al., 2020; Kehinde et al., 2020).

In an answer to this urgent requirement, Geographic Information Systems (GIS) and Remote Sensing (RS) have been considered dynamic tools in the spatial land suitability evaluation and one that can layer and combine different environmental data sets like soil properties, topographies, rainfall, and infrastructure networks required in spatial decision-making (Partoyo, 2022; Alam et al., 2024; Yuliawan & Pusvita, 2024). To enhance objectivity and reproducibility in land evaluation, GIS is increasingly being paired with Multi-Criteria Decision Analysis (MCDA) methods, particularly the Analytic Hierarchy Process (AHP). AHP offers a robust and transparent framework for assigning weights to multiple biophysical and socioeconomic criteria, allowing for expert-driven prioritization (Rovai & Andreoli, 2018; Wotolan et al., 2021; Nungula et al., 2024). Its flexibility in handling both qualitative and quantitative data makes it especially suitable for agricultural applications (Jozi & Ebadzadeh, 2014; Wijesinghe, 2024).

Several studies have demonstrated the application of GIS and AHP in agricultural land suitability assessments. In the Amhara Region of Ethiopia, land suitability for rice production was assessed through GIS-AHP, considering soil, climate, and topography. It was also noted that in more than 70% of the areas, either high or moderate suitability for rice production was indicated, presenting a great prospect for agricultural development in the region (Ayehu & Besufekad, 2015). In Ghana, 23.3% of land ranked as highly suitable for cocoa,


whereas from 1.5 to 23% of the territory in Peru was identified by the AHP model as highly suitable, depending on the modeling approach employed (Rojas-Briceño et al., 2022; Bhat, 2023); meanwhile, a study in Egypt observed 36% suitability for maize, stressing the importance of the existing climate and soil conditions (Abuzaid & El-Husseiny, 2022). A few other assessments in Nigeria indicated land suitability for cassava up to the extent of 65.92% existing in the southern part of Adamawa State, thereby recognizing large areas for potential cultivation (Zemba et al., 2018) as well as rice in Oyo State (Ayoade, 2017) and soybean in Kaduna State (Sadiq et al., 2023). However, most of these studies are limited by narrow spatial coverage, focus on a single crop, or use of low-resolution datasets, limiting their relevance for broader agricultural policy and spatial planning.

Notwithstanding the growing corpus of GIS-AHP literature, only a few studies have developed comprehensive, multi-crop, land suitability maps at sub-national scale in Nigeria capturing the seven crops this study is examining. Another major gap in research is the relative inter-crop suitability studies across entire state territories using fine-scale data that have been validated using expert opinions and empirical observations.

The proposed study is set to create a large-area scale (30 m), multi-crop land-suitability model using a GIS-AHP approach for seven major arable crops of Osun State. The thrust will then be to produce spatially explicit suitability maps that can be employed in the pursuit of precision agriculture, sustainable land management, and zoning policy decisions at the local government area (LGA) level. The inclusion of various environmental variables and stakeholder knowledge in the decision-making process aims to support sub-national planning frameworks that might enhance food security and resource optimization in southwestern Nigeria.

2. MATERIALS AND METHODS

Study Area. The study was undertaken in Osun State (Southwestern Nigeria) located between latitudes 7°30'N and 8°10'N and longitudes 4°00'E and 5°05'E. Osun State covers an area estimated at 9,251 km² and comprises 30 Local Government Areas. The region has a tropical climate and four distinct seasons of bimodal rainfall, with rainfall ranging from 1,100 mm to 1,400 mm, and temperature ranges between 25°C and 31°C. The topography varies from lowland plains to undulating hills, with the land predominantly used for smallholder rain-fed agriculture. Because of this diversity of ecological features, Osun State supports varied arable crops, making it a fair latitude land suitability analysis location. The study area is shown in figure 1.

Fig. 1. Map of the study area.

Source: the authors

Data Sources. The land suitability assessment incorporated a range of geospatial datasets relevant to crop growth, including climatic, topographic, edaphic, and infrastructural variables. The data sources are listed in table 1.

Table 1. Spatial datasets and metadata used to derive suitability layers in the multi-criteria evaluation model

S/N	Data	Name	Resolution	Sources
1	Land use and land cover	Landsat 8 & 9	30m	https://earthexplorer.usgs.gov/
2	Elevation & slope	SRTM	30m	https://earthexplorer.usgs.gov/
3	Climate (Precipitation)	CHRS	4km	https://chrsdata.eng.uci.edu/
4	Climate (Temperature)	MODIS Global LST	1km	https://earthexplorer.usgs.gov/ (Google Earth engine)
5	Climate (Humidity)	NASA	2m	https://power.larc.nasa.gov/data-access-viewer/
6	Soil	ISRIC	250m	https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
7	Rivers / surface water	OSM	250m	https://download.geofabrik.de/africa.html
8	Roads	OSM	250m	https://download.geofabrik.de/africa.html

Source: the authors

Data Acquisition and Processing. Environmental and spatial datasets were integrated to analyze land suitability for seven major arable crops throughout Osun State. Land use/land cover data were procured from Landsat

8/9 (30 m), while terrain data such as elevation and slope were extracted from SRTM. Climate variables of precipitation, temperature, and relative humidity were derived from CHRS, MODIS, and NASA POWER, respectively. Soil characteristics of pH, organic carbon, texture, and water holding capacity were collected from ISRIC SoilGrids. Distances to infrastructure were calculated using road and river vector datasets from OpenStreetMap and HydroSHEDS.

All the layers were reprojected to WGS 84 / UTM Zone 31N and resampled to a common 30-m resolution. Geospatial preprocessing steps were rasterization, Euclidean distance analyses (for proximity variables), image classification (for LULC), and interpolation (for climate and soil surfaces). Elevation and slope layers were derived from the DEM using standard geoprocessing tools. Each layer was reclassified into five suitability classes based on crop-specific ecological requirements and standardized for integration into a weighted overlay analysis using AHP-derived weights.

Normalization and reclassification based on crop requirements. Using ArcGIS Pro 3.2 for heavy assessment and for determining land suitability for arable crops, an integrated approach has been undertaken, starting with the accumulation of all the necessary data mentioned in objective one. These datasets include soil texture, temperature, relative humidity, rainfall, pH, slope, soil nutrient, proximity to roads and rivers, and land use/land cover data. The datasets are normalized and reclassified depending on each crop's special requirements.

Minimum and Maximum Criteria Values in Osun state Nigeria. The criteria required for crops in study farming in Osun state Nigeria are represented (table 2). Additional suitability tables are provided in the Supplementary list.

Table 2. Suitability criteria ranges (S1–N) for major crops in Osun State, Nigeria

Criterion	Yam	Maize	Cassava	Rice	Plantain	Cocoa	Vegetables
LULC (S1)	Agricultural land	Forest	Agricultural land				
Elevation (m, S1)	68–155	68–155	68–155	68–155	68–155	68–155	68–155
Slope (S1)	0–5	0–5	0–5	0–5	0–5	0–5	0–5
Precipitation (mm, S1)	2600–2800	2801–3100	2600–2800	2517–2599	3401–3697	3401–3697	2801–3100
Temperature (°C, S1)	28–30	26–28	28–30	28–30	28–30	26–28	24.6–26
Relative Humidity (% S1)	70–75	70–75	70–75	70–75	65–70	80–82	65–70
Soil pH (S1)	6.13–6.17	6.13–6.17	6.13–6.17	6.13–6.17	6.13–6.17	6.13–6.17	6.13–6.17
Soil Texture (S1)	Loam	Loam	Loam	Clay	Loam	Loam	Loam
Soil N (mg/kg, S1)	450–599	450–599	450–599	450–599	450–599	450–599	450–599

Criterion	Yam	Maize	Cassava	Rice	Plantain	Cocoa	Vegetables
Soil P (mg/kg, S1)	500–676	500–676	500–676	500–676	500–676	500–676	500–676
Soil K (mg/kg, S1)	200–260	200–260	200–260	200–260	200–260	200–260	200–260
Soil Ca (mg/kg, S1)	1100–1493	1100–1493	1100–1493	1100–1493	1100–1493	1100–1493	1100–1493
Soil Depth (cm, S1)	40–58	36–46	40–58	23–36	40–58	40–58	0–23
Soil Organic Carbon (g/kg, S1)	428–698	428–698	428–698	428–698	428–698	428–698	428–698
Soil Water Capacity (kPa, S1)	263–336	263–336	263–336	263–336	263–336	263–336	263–336
Distance to Rivers (m, S1)	5000–9999	2000–4999	5000–9999	2000–4999	2000–4999	2000–4999	2000–4999
Distance to Roads (m, S1)	0–500	0–500	0–500	0–500	0–500	0–500	0–500

Source: the authors

Analytical Hierarchy Process (AHP). Analytic Hierarchy Process (AHP) is a method or a tool that aids in sorting and assessing complex decisions. Thomas L. Saaty was the developer of this tool in the 1970s and it has been used to establish a hierarchy of criteria and factors influencing land suitability. AHP techniques assign appropriate weights to each criterion based on its relative importance, so that crucial factors such as soil types, soil pH, climatic data, soil nutrients, land use, and soil depth are emphasized in the analysis, while other factors such as road and river proximity are given less importance. Because the AHP Excel file supports only 10 criteria, the free web-based decision-making tool AHP Online System (AHP-OS) from <https://bpmsg.com/ahp/ahp.php> was preferred. This is because 17 criteria were needed to be considered for the analysis.

If one clicks on AHP Priority Calculator and chooses the number of criteria (17), a new window opens where one can enter the criteria that were used in the analysis. Pairwise comparisons are then carried out to ascertain how important each criterion is relative to every other one. The AHP scale includes: 1- Equal Importance, 3- Moderate importance, 5- Strong importance, 7- Very strong importance, 9- Extreme importance (2,4,6,8 values in-between).

The resulting weights for the criteria based on the pairwise comparisons. The multi-criteria evaluation and expert judgment with the Analytic Hierarchy Process (AHP) guided the decision-making process. The derived priorities highlight the relative importance of each criterion in determining land suitability for crop cultivation in Osun State. A total of 136 pairwise comparisons were conducted to establish the weights, with a Consistency Ratio (CR) of 6.5%,

which is below the 10% threshold, confirming that the expert judgments were consistent. The principal eigenvalue was 18.678, converging in six iterations with high precision (delta = 4.3×10^{-8}).

The results show that rainfall, soil characteristics, slope, and land use/land cover had the highest influence on suitability outcomes, while lineament density and NDVI contributed less significantly. These priorities were computed from the decision matrix through eigenvector calculations and were applied in the weighted overlay analysis to produce the final suitability maps. The Pairwise Comparison matrix of land suitability for farming in Osun state, Nigeria is presented in fig. 2.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
1	1	1.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	3.00	1.00	2.00	5.00	
2	1.00	1	1.00	1.00	2.00	2.00	1.00	2.00	2.00	2.00	2.00	2.00	1.00	3.00	3.00	2.00	4.00	
3	0.50	1.00	1	1.00	1.00	1.00	3.00	3.00	3.00	3.00	3.00	3.00	2.00	3.00	4.00	4.00	4.00	
4	1.00	1.00	1.00	1	3.00	4.00	5.00	4.00	4.00	4.00	4.00	4.00	4.00	5.00	4.00	5.00	5.00	
5	1.00	0.50	1.00	0.33	1	1.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	4.00	4.00	3.00	4.00	5.00
6	1.00	0.50	1.00	0.25	1.00	1	1.00	1.00	2.00	2.00	2.00	2.00	2.00	3.00	3.00	3.00	3.00	3.00
7	1.00	1.00	0.33	0.20	0.33	1.00	1	1.00	2.00	2.00	2.00	2.00	3.00	3.00	2.00	4.00	4.00	4.00
8	1.00	0.50	0.33	0.25	0.33	1.00	1.00	1	3.00	3.00	3.00	3.00	3.00	4.00	4.00	3.00	4.00	4.00
9	1.00	0.50	0.33	0.25	0.33	0.50	0.50	0.33	1	1.00	1.00	1.00	2.00	3.00	4.00	4.00	4.00	2.00
10	1.00	0.50	0.33	0.25	0.33	0.50	0.50	0.33	1.00	1	1.00	1.00	2.00	3.00	4.00	4.00	2.00	
11	1.00	0.50	0.33	0.25	0.33	0.50	0.50	0.33	1.00	1.00	1	1.00	2.00	3.00	3.00	3.00	3.00	
12	1.00	0.50	0.33	0.25	0.33	0.50	0.50	0.33	1.00	1.00	1.00	1	2.00	3.00	4.00	4.00	3.00	
13	1.00	1.00	0.50	0.20	0.25	0.50	0.33	0.33	0.50	0.50	0.50	0.50	0.50	1	3.00	3.00	4.00	5.00
14	0.33	0.33	0.33	0.25	0.25	0.33	0.33	0.25	0.33	0.33	0.33	0.33	0.33	0.33	1	1.00	3.00	3.00
15	1.00	0.33	0.25	0.20	0.33	0.33	0.50	0.25	0.25	0.25	0.33	0.25	0.33	1.00	1	1.00	3.00	
16	0.50	0.50	0.25	0.20	0.25	0.33	0.25	0.33	0.25	0.25	0.33	0.25	0.25	0.33	1.00	1	3.00	
17	0.20	0.25	0.25	0.20	0.20	0.33	0.25	0.25	0.50	0.50	0.33	0.33	0.20	0.33	0.33	0.33	0.33	1

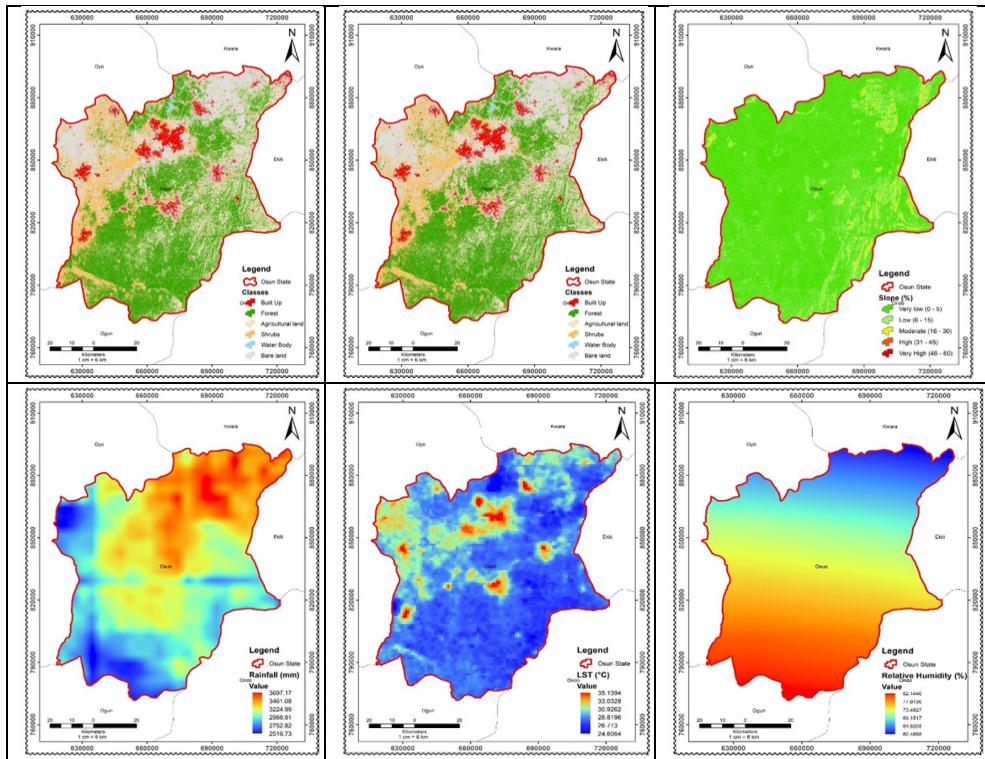
Fig. 2. Pairwise Comparison matrix of land suitability for farming in Osun State, Nigeria.

Source: the authors

The Weighted Sum Analysis (WSA) procedure found within ArcGIS was used for integrating together the reclassified raster datasets, with some weights obtained through the AHP method. Using the slope as an example, general land parameters like slope, soil pH, and rainfall affecting crop growth were multiplied by their respective weights and accumulated to derive the composite land suitability index. The output raster was then converted into integers and classified into five suitability ranges: Highly suitable- S1, Suitable-S2, Moderately suitable- S3, Marginally suitable- S4, and Unsuitable-N. These maps serve as a guideline in selecting prime areas for growing cassava, maize, yam, rice, cocoa, plantains, and vegetables in Osun State. Criteria rank and weighted values are presented in table 3.

Table 3. Criteria rank and weighted value of land suitability for farming in Osun state, Nigeria

Criteria	Priority (%)	Rank	(+)	(-)
LULC	6.6	6	4.0	4.0
Elevation	8.4	4	3.8	3.8
Slope	9.9	2	4.4	4.4
Precipitation	15.3	1	7.5	7.5
Temperature	9.8	3	4.5	4.5
Relative Humidity	6.5	7	1.7	1.7
Soil pH	6.3	8	2.2	2.2
Soil Texture	7.3	5	3.4	3.4
Soil Nitrogen	4.4	10	1.9	1.9
Soil Phosphorus	4.4	10	1.9	1.9
Soil Potassium	4.3	12	1.5	1.5
Soil Calcium	4.5	9	1.8	1.8
Soil Depth	4.0	13	2.2	2.2
Soil Organic Carbon	2.3	14	1.1	1.1
Soil Water Capacity	2.3	15	1.3	1.3
Distance to Rivers	2.0	16	1.0	1.0
Distance to Roads	1.5	17	0.6	0.6


Source: the authors

3. RESULTS AND DISCUSSION

Land use and land cover dynamics in Osun State. The land use/land cover (LULC) analysis studied the agricultural landscape of Osun State. Forest areas, as of 2023, are the dominant landscape, covering 37.53% (fig. 3), a proof of the region's ecological richness. Agricultural lands cover 15.23% while shrublands and bare lands take 19.81% and 22.69%, respectively. Built-up areas considered less for development cover 4.53%, and water bodies cover 0.20%. These spatial patterns point towards the land being a bit of everything: conservation and agricultural land.

Elevation and slope as determinants of suitability. Elevation analysis (fig. 3) indicates that Osun State's terrain spans from 68 to 773 meters. Most agricultural activities occur in areas with low to moderate elevation (Low: 26.25%, Moderate: 29.45%). High and very high elevation zones (26.75% and 12.05%, respectively) are limited in agricultural viability. Slope, a critical determinant of runoff and erosion, shows that 71.7% of the state has very low slope (fig. 3), ideal for crop farming, while only 0.10% is categorized as high slope terrain.

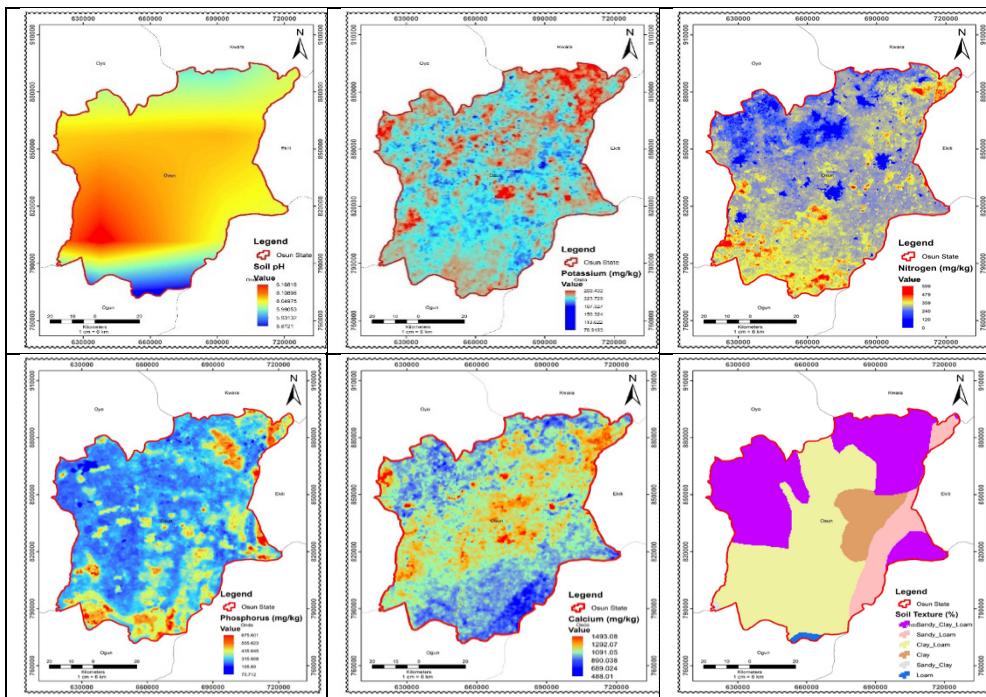
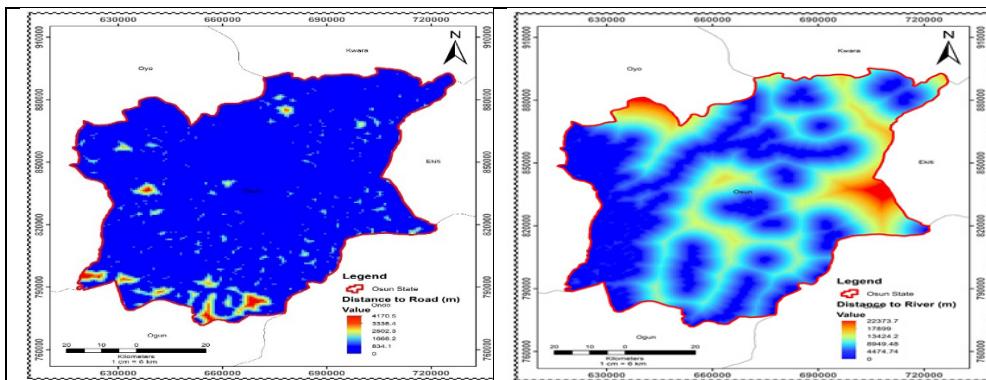

Climatic patterns: precipitation, temperature, and humidity. Rainfall patterns range from 2,516.73 mm to 3,697.17 mm (fig. 3), supporting diverse crop types. The northwestern regions exhibit high rainfall suitable for plantain and cocoa, while areas with lower rainfall (southwest) suit yam and maize. Temperature ranges from 24.61°C to 35.14°C (fig. 3), with central zones experiencing optimal crop temperatures (28-30°C). Relative humidity varies between 60.49% and 82.14%, contributing to moisture availability for crops like vegetables and rice.

Fig. 3. Land use and land cover map, elevation map, slope map of Osun state, rainfall map, temperature map and relative humidity of Osun State, Nigeria (2022).


Source: the authors

Soil suitability indicators. Soil pH in Osun State varies slightly from 5.87 to 6.17, suitable for most crops (fig. 4). Nutrient content such as nitrogen (0-599 mg/kg), phosphorus (75.71-675.60 mg/kg), and potassium (76.92-260.43 mg/kg) shows a moderately rich nutrient profile (fig. 4). Organic carbon (0-698 g/kg) and calcium (488.01-1,493.08 mg/kg) indicate fertility variation (fig. 4). Soil texture includes loam, sandy loam, and clay, influencing crop-specific performance (fig. 4).

Fig. 4. Soil pH map, soil potassium map, soil nitrogen map, soil phosphorus map, soil calcium map, and soil texture map of Osun State, Nigeria. *Source: the authors*

River and road accessibility. Euclidean analysis of road and river networks (fig. 5) shows that most areas lie within 0 to 5,000 meters from water sources and roads. This proximity enhances irrigation potential and market access, especially vital for perishable crops like vegetables.

Fig. 5. Euclidean distance to road map and Euclidean distance to river map of Osun State, Nigeria. *Source: the authors*

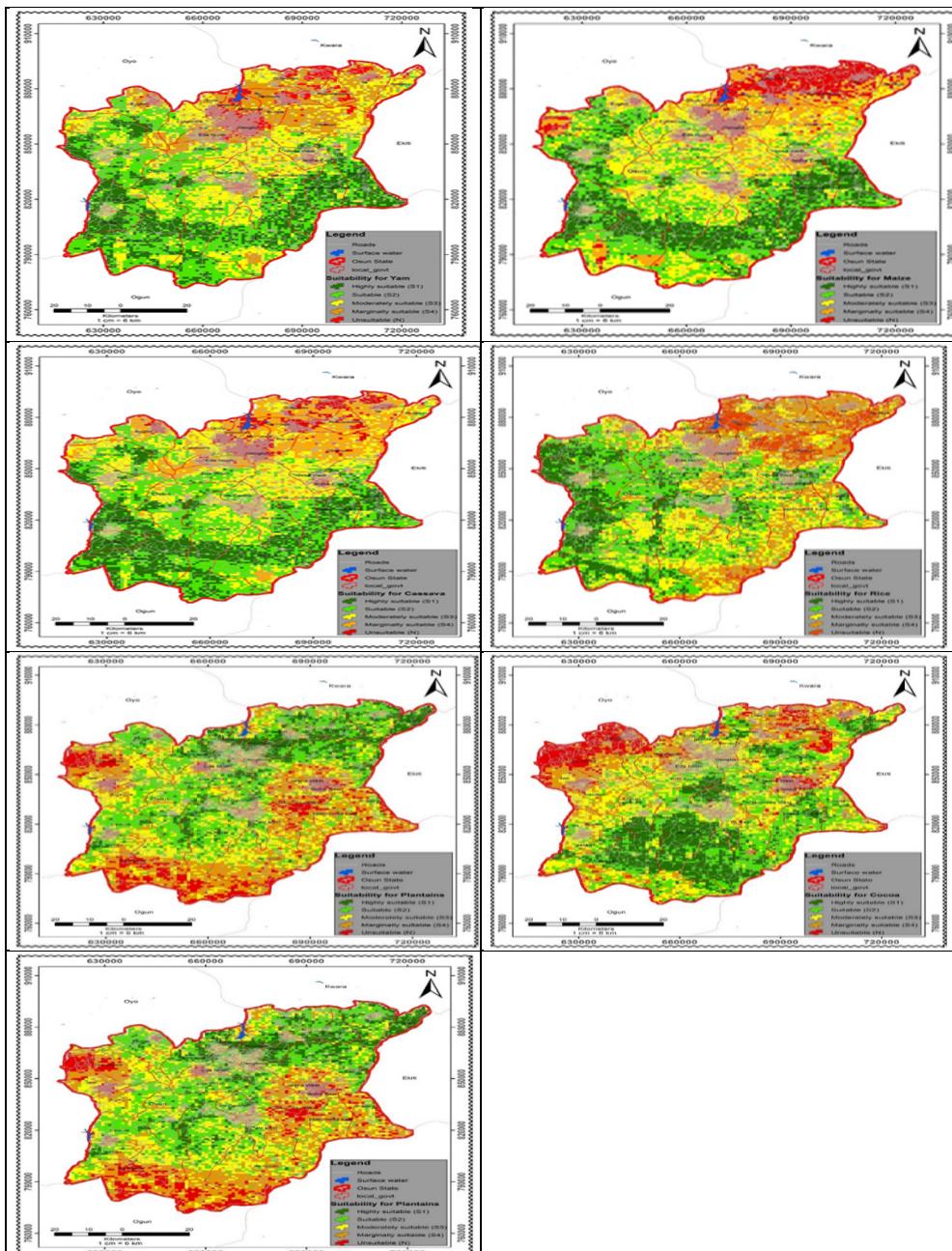

Suitability mapping and validation. The final suitability maps were generated for seven crops: yam, maize, cassava, rice, plantain, cocoa, and vegetables. Each map was classified into S1–N zones using Jenks Natural Breaks to allow for data-driven interval segmentation. Output maps were normalized to a 0–1 scale for cross-crop comparability.

Table 4. Land suitability area covered for arable crops in Osun state, Nigeria

Crop	Highly Suitable (S1)	Suitable (S2)	Moderately Suitable (S3)	Marginaly Suitable (S4)	Unsuitable (N)
Yam	20.16% (1687.678 sq km)	28.93% (2420.86 sq km)	27.19% (2275.9 sq km)	17.60% (1473.015 sq km)	6.12% (511.9051 sq km)
Maize	20.66% (1728.457 sq km)	26.22% (2193.395 sq km)	26.37% (2205.898 sq km)	16.15% (1350.735 sq km)	10.60% (886.8412 sq km)
Cassava	22.41% (1870.042 sq km)	27.98% (2335.098 sq km)	23.61% (1970.261 sq km)	19.68% (1642.066 sq km)	6.33% (528.3051 sq km)
Rice	16.44% (1375.83 sq km)	27.51% (2302.94 sq km)	26.11% (2185.75 sq km)	20.96% (1754.37 sq km)	8.99% (752.38 sq km)
Plantains	12.83% (1071.64 sq km)	28.15% (2350.83 sq km)	26.30% (2196.03 sq km)	24.22% (2022.26 sq km)	8.50% (710.03 sq km)
Cocoa	19.91% (1663.10 sq km)	25.47% (2126.87 sq km)	25.03% (2090.30 sq km)	19.79% (1652.90 sq km)	9.80% (818.58 sq km)
Vegetables	16.43% (1372.38 sq km)	22.90% (1912.27 sq km)	26.80% (2237.69 sq km)	23.97% (2001.22 sq km)	9.90% (826.97 sq km)

Source: the authors

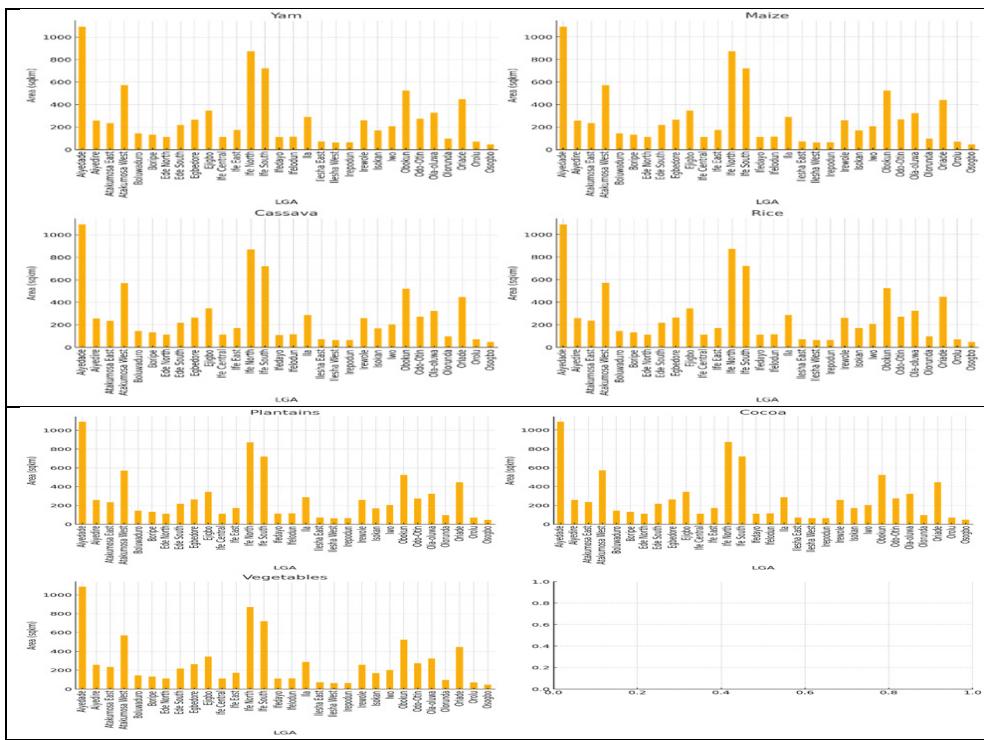

Land suitability for arable crops. The land suitability analysis for various crops (table 4 and fig. 6) of Osun State, covering a total area of 8,549.21 square kilometers, shows varying degrees of suitability for yam, maize, cassava, rice, plantains, cocoa, and vegetables. The highly suitable areas (S1) for these crops range from 12.83% to 22.41% of the land, while the suitable areas (S2) span between 22.90% and 28.93%. Moderately suitable areas (S3) constitute 23.61% to 27.19%, and marginally suitable areas (S4) cover 16.15% to 24.22%. Finally, the unsuitable areas (N) make up 6.12% to 10.60% of the land, depending on the crop.

Fig. 6. Composite suitability maps of yam, maize, cassava, rice, plantains, cocoa and vegetables farming in Osun State, Nigeria.

Source: the authors

MULTI-CROP LAND SUITABILITY ASSESSMENT USING GIS–AHP IN OSUN STATE, NIGERIA

Fig. 7. Land suitability graph for arable crops in Osun State, Nigeria.

Source: the authors

4. CONCLUSIONS

This study performs a full-scale analysis of land suitability for arable crop production in Osun State, Nigeria, through an adapted GIS-based AHP procedural framework. Using spatial datasets for synthesis that include land use/land cover, topographic (slope, elevation), climatic (temperature, precipitation, relative humidity), edaphic (soil nutrients, pH, texture, depth, water-holding capacity), and infrastructural (roads and rivers) variables, it practically models spatial variability in the suitability of seven major crops: cassava, maize, yam, rice, cocoa, plantains, and vegetables.

Major findings show that the production of cassava and maize stands first in agronomic and spatial favorability throughout Osun State, where the highest proportion of land has been classified as highly suitable (S1). Yam also features many lands in the suitable to moderately suitable range, thereby reinforcing the local food economy. On the contrary, rice, cocoa, plantains, and

vegetables show spatial selectivity in suitability, depending on various ecological restrictions, such as sensitivity to pH, elevation, or rainfall limits. These differences testify to the different agroecological requirements of the crop and bring to view the need for site-specific planning.

At the sub-regional level, spatial disaggregation across the thirty local government areas of Osun shows that those with the highest multi-crop suitability potential include Aiyedaade, Atakumosa West, Ife North, Ife South, and Obokun. With favorable terrain, good soils, and moderate climatic conditions, these areas are high priority zones for intensification in agriculture, resource allocation, and investment. This study, by adopting a data-driven, spatially explicit approach, asserts the usefulness of the GIS-AHP in precision agriculture, land-use optimization, and resource management. Thus, the methodology offers a scalable template that can be replicated in other agro-ecological zones within Sub-Saharan Africa, given land pressure, climate change, and suitable resilient food systems. More definitively, the outputs represent crucial inputs to policy formulation, thereby enabling various stakeholders—from government agencies to development partners and local farmers—to make informed decisions about land allocation, crop diversification, and agricultural zoning. Therefore, the study thereby adds to the discourse on sustainable agriculture, food security, and environmental stewardship across the region at large.

REFERENCES

1. Abuzaid, A. S., & El-Husseiny, A. M. (2022), *Modeling crop suitability under micro irrigation using a hybrid AHP-GIS approach*, Arabian Journal of Geosciences, 15 (13). <https://doi.org/10.1007/s12517-022-10486-8>
2. Alabi, A. A., Oladimeji, S. B., Olaoye, A. M., Ogungbe, A. S., & Coker, J. O. (2024), *Assessment of impact of agricultural land-use types on some soil physical and chemical properties in Abeokuta, Southwestern Nigeria*, Nigerian Journal of Physics. <https://doi.org/10.62292/njp.v32i4.2023.171>
3. Alam, F., Vimal, B. K., Kumari, R., Choudhary, S. K., Kumari, P., & Kumar, P. (2024), *Geoinformatics-based land suitability analysis of green gram (*Vigna radiata L.*) for Kosi region of Bihar*, AATCC Review, 12 (2). <https://doi.org/10.21276/aatccreview.2024.12.02.120>
4. Ayeju, G. T., & Besufekad, S. A. (2015), *Land suitability analysis for rice production: A GIS-based multi-criteria decision approach*, American Journal of Geographic Information System, 4 (3), p. 95–104. <http://www.sapub.org/global/showpaperpdf.aspx?doi=10.5923/j.ajgis.20150403.02>
5. Ayoade, M. A. (2017), *Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS*, Theoretical and Applied Climatology, 129 (3), p. 1341–1354. <https://doi.org/10.1007/S00704-016-1852-4>

6. Bhat, K. A. (2023), *Land suitability analysis for cocoa (*Theobroma cacao*) production in the Sunyani municipality, Bono Region, Ghana*, Smart Agricultural Technology, 5, 100262. <https://doi.org/10.1016/j.atech.2023.100262>
7. Chiaka, J. C., Zhen, L., Yunfeng, H., Xiao, Y., Muhiirwa, F., & Lang, T. (2022), *Smallholder farmers contribution to food production in Nigeria*, Frontiers in Nutrition, 9. <https://doi.org/10.3389/fnut.2022.916678>
8. Ezekiel, A. A., Ayinde, E. O., & Akinsola, G. O. (2020), *Economic analysis of land management practices among crop farmers in Osun State, Nigeria*, Agrosearch, 19 (2), p. 100–108. <https://doi.org/10.4314/AGROSH.V19I2.7>
9. Haggblade, S. (2013), *Sub-Saharan African agriculture*, in Kaplan, D.M. & Thompson, P.B. (eds.) *Encyclopedia of Food and Agricultural Ethics*, Springer, Dordrecht, p. 1–9. https://doi.org/10.1007/978-94-007-6167-4_245-1
10. Jozi, S. A., & Ebadzadeh, F. (2014), *Application of multi-criteria decision-making in land evaluation of agricultural land use*, Journal of The Indian Society of Remote Sensing, 42 (2), 363–371. <https://doi.org/10.1007/S12524-013-0318-8>
11. Kehinde, F. A., Florence, Y. A., Oruimogunje, O. I., & Benjamin, O. A. (2020), *Indigenous system of soil fertility management in a typical farm settlement in Osun State, Southwestern Nigeria*, Journal of Geography, Environment and Earth Science International, 51–60. <https://doi.org/10.9734/JGEESI/2020/V24I430218>
12. Kray, H. A., Heumesser, C., Mikulcak, F., Giertz, Å., & Bucik, M. (2018), *Productive diversification in African agriculture and its effects on resilience and nutrition*, World Bank. <http://documents.worldbank.org/curated/en/942331530525570280/Productive-diversification-of-African-agriculture-and-its-effects-on-resilience-and-nutrition>
13. Nungula, E. Z., Massawe, B. J., Chappa, L. R., Nhunda, D. M., Seleiman, M. F., Ali, N., & Gitari, H. H. (2024), *Multicriteria land suitability assessment for cassava and bean production using integration of GIS and AHP*, Cogent Food & Agriculture, 10 (1). <https://doi.org/10.1080/23311932.2024.2333316>
14. Olugbire, O. O., Olorunfemi, S., & Titilope, O. (2021), *Contribution of small-scale farming and local food supply to sustainable production and food security in Nigeria: a review*, Journal of Agribusiness and Rural Development, 59 (1), p. 91–99. <https://doi.org/10.17306/JJARD.2021.01390>
15. Oyekale, A. S. (2012a), *Dynamics of land use, degradation and sustainability of the Nigerian agricultural systems*, African Journal of Agricultural Research, 7 (47), p. 6215–6226. <https://doi.org/10.5897/AJAR12.1959>
16. Oyekale, A. S. (2012b), *Fuzzy indicator of sustainable land management and its correlates in Osun State, Nigeria*, Asian Journal of Agriculture and Development, 39 (3), p. 175–182. <https://doi.org/10.1080/09709274.2012.11906509>
17. Partoyo, H. L. (2022), *Integrating GIS and remote sensing for land suitability evaluation for rice in Sleman Regency, Yogyakarta, Indonesia*, IOP Conference Series: Earth and Environmental Science, 1018 (1), 012037. <https://doi.org/10.1088/1755-1315/1018/1/012037>
18. Qiu, J., Queiroz, C., Bennett, E. M., Cord, A. F., Crouzat, E., Lavorel, S., Maes, J., Meacham, M., Norström, A. V., Peterson, G. D., Seppelt, R., & Turner, M. G. (2021), *Land-use intensity mediates ecosystem service tradeoffs across regional social-ecological systems*, Ecosystems and People, 17 (1), p. 264–278. <https://doi.org/10.1080/26395916.2021.1925743>

19. Rojas-Briceño, N. B., García, L. M., Cotrina-Sánchez, A., Goñas, M., Salas López, R., Silva López, J. O., & Oliva-Cruz, M. (2022), *Land suitability for cocoa cultivation in Peru: AHP and MaxEnt modeling in a GIS environment*, *Agronomy*, 12 (12), 2930. <https://doi.org/10.3390/agronomy12122930>
20. Rovai, M., & Andreoli, M. (2018), *Integrating AHP and GIS techniques for rural landscape and agricultural activities planning*, in Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., and Viaggi, D. (eds.) *Multicriteria Analysis in Agriculture. Current Trends and Recent Applications*, Springer, Cham, p. 69–98. https://doi.org/10.1007/978-3-319-76929-5_3
21. Sadiq, F. K., Ya'u, S. L., Aliyu, J., & Maniyunda, L. M. (2023), *Evaluation of land suitability for soybean production using GIS-based multi-criteria approach in Kudan Local Government Area of Kaduna State, Nigeria*, *Environmental and Sustainability Indicators*. <https://doi.org/10.1016/j.indic.2023.100297>
22. Searchinger, T. D., Dumas, P., Ray, D. K., Wirsénus, S., Herrero, M., Peng, L., & Vishwakarma, S. (2023), *Pathways to a sustainable food future in Sub-Saharan Africa*, Research Square. <https://doi.org/10.21203/rs.3.rs-3283730/v1>
23. Siptits, S. O., & Evdokimova, N. E. (2020), *Methods of ecological and economic optimization of land resource use in regional agri-food systems*, E3S Web of Conferences, 222, 06036. <https://doi.org/10.1051/E3SCONF/202022206036>
24. Wijesinghe, D. C. (2024), *GIS-based AHP and MCDA modeling for cropland suitability analysis: A bibliometric analysis*, *Gazi University Journal of Science Part A: Engineering and Innovation*, 11 (3), p. 598–621. <https://doi.org/10.54287/gujsa.1510527>
25. Wotlolani, D. L., Lowry, J. H., Wales, N., & Glencross, K. S. (2021), *Land suitability evaluation for multiple crop agroforestry planning using GIS and multi-criteria decision analysis: A case study in Fiji*, *Agroforestry Systems*, 95 (8), p. 1–14. <https://doi.org/10.1007/S10457-021-00661-3>
26. Yuliawan, K., & Pusvita, E. A. (2024), *GIS-based spatial analysis for land suitability and community quality of life development in Nabire Regency*, *Jurnal Sistem Informasi*, 10 (2), p. 107–116. <https://doi.org/10.19109/jusifo.v10i2.24830>
27. Zemba, A. A., Kefas, J., & Hamza, A. (2018), *Land suitability analysis for decision-making in cassava (*Manihot spp.*) cultivation in southern part of Adamawa State, Nigeria*, *Global Journal of Agricultural Sciences*, 16 (1), p. 1–10. <https://doi.org/10.4314/GJASS.V16I1.1>